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Abstract - ““ - ““:::”-

The loss of detection sensitivity Incurred by any stage of Image processing may nor-
mally be characterizedby the frequency dependence c? the detective quantum efficiency (DQE)
of that stage of processing, provided the image Is represented In continuous coordinates.
However, l.lmltatlcnstG the DQE concept arise when discretely sampled projection data are
used to obtain discretely sampled computed tomographic (CT) reconstructions. The source of
tl~eselimitations is che al>aslng produced by the discrete sampling which mixes contrihu-
tifms from various frequencies. An associated problem Is that the SNR for the detection of’
an Obdect can depend upon the position of the object relatlve to the discrete reconstruction
pixels. The effective SNR for discrete Images must take into accocnt this variation,
lihilethere may be no loss in the detection SNR for reconstructions in continuous coordi-
nates (DQE = 100%!), a reduction In the SNR will result from allaslng for discrete recon-
structions. A simple one-dimensional model.elucidates the characteristics of discrete CT
reconstruction.

—. —. —-.—-.——— —..
Introduction

.——.-.

The Problem of’the detection of objects in statistically 1 mited computed tomographic
(CT) reconstructionshas been approached by several autho~s

14 These authors have mainly
tiealtwith effect of the unusual correlations in CT noise5-~on the detection of reconstruc-
ted obJects. Their derivations, based on continuous coordinates, have thus far avoided the
question of the effect of discrete reconstructions on detection. This paper will concen-
trate on these effects which will become especially important for the detection of small
objects (i.e., smaller than a few pixels width). A one-dimensional model of the CT recon-
StXWCtlOtI process will be used to demonstrate the types of effects that can be expected to
occur in the standard 2-D (or 3-D) CT reconstruction. The results for the 1-D model are
directly applicable to situations in which discrete 1-D signals are combined to improve the
signal-to-noiseratio.

..---- . ...-. @e-Dimensional Case . . -.. . ---

1-D Model
. .. . ... . .

.
----- -

. . . . .-.

A one-dimensionalmodel will be used to illustrate the effects of discrete sampling.
Figure 1 presents the hypothetical x-ray radiographical situation. A source of x rays il-
luminates a section of uniform background material in which is embedded ;he obJect to be
detected, The integral of the combined attenuation coefficient through the material,

..-.,. ._.-. . ... . oalled the projection, is . .
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Fig. 1 One-dimensionalmodel for the
detection of an object..

No(x)
P(X) + p. = tn ~J- : (1)

where No(x) is the initial x-ray density and
N(x) is the unscattered x-ray density. P(x)
1s the contribution from vhe obJect and p is
the instant contribution from the ackgr8und
mlterial. k’The noiee power spectrum of the
measured projections arising from the etatis-
tioal fluctuations in the number of detected
x rays 1s

sp(f)=~ ,, (2)

where N is the average density of unscattered
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x rays Assuming N >> N and 100% detection efficiency. From signal detection
know that the opt?mum signal-to-noise ratio for the detection of the ~bject Is

~hecry we

‘NR2=~f ~’= pf ‘s’’(f) .’

EN
J

df lP(f)12

(3)

(4)

where P(f) Is the Fourier transform of the projection of the object. PSNR stands for the
power signal-to-noiseratio. It is well to point out that this SNR applies to the binary
decision case in :’hichthe decision to be made is whether or not a specific signal Is pre-
sent at a specific location. In this situation the SNR Is the same as the detection sensi-

~~rves.~ ‘~~e opt~mum SNR iS that achieved by the optimum I’eCC!iVer (Or decision CriteI’iOIl),
tivlty n d“ used to describe the resulting receiver operated characteristic (ROC)

In which the characteristicsof the noise as represented by S are taken Into account. The
optimum receiv~r is equivalent to the well-known matched fllt~r 10 method. Equations 3 and
4 a~sume that Lhere Is no degradation of the projection signal in the imagi..gprocess
(MIiF= 1).

Discrete Projections

We now augment the 1-D model by supposing that the projections are sampled discretely
Instead of continuously. Thus, the measurements consist of a sequence of values each of
which correspond to the number of x rays accumulated within an integrating aperture cente..rd
on a given position. It is assumed that the positions of these measurements are evenly dis-
tributed along the x-axis with spacin% a. The effect of the aperture may be considered
equivalent to a convolution of the original projection p(x) with the aperture function g(.K)..
The Fourier transform of the discretely sampled projections is

P; (f) = G(f) P(f) ei2’’f(A-yo)* ~ 6(f - ‘kfa) (5)
o k=-=

The exponential phase factor results from the offset of’the sampling grid relative to x = O
by a dlstallcey . Also, A Is the position of the object relative to x m O, and P(f) Is the
Fourier transfo~m of the ohJect centered at the origin. The cof~olution (~) with the s@-
quence of 6-functions represents the well-known allasing effect which 1s produced by dis-
crete sampling. The discrete ~a pling at a spacing a can only represent frequencies up to
the Nyqu~st frequency f = (2a)-f Thus, contributions present in the distribution being
sampled which occur at ?requenci.e;above fa must reappear below fa. A convenient notation
for this allasing convo?.utlonoperation is

.

Af ’{q(f)}= ~~(f- 2kfa) * g(f) =
k=-oa ,F

q(f - 2kfa)
.a s-C9

.
;6)

..
.

. .. . . . .
Then Eq. 5 may be written as

.

.
. ..

P: (f) = Af {G(f) P(f) ei2mf(A-ye)} ,Ifl s fa
o a

(7)

The noise power spectrum of the discretely sampled pro~ectlons is unaffected by the
arnpllng apei%lme since the x rays detected in each measurement are independent of those
detected in other measurements, Thus, the noise fluctuations are uncorrelated leading to
a flat noise spectrum (white noise)

. . .. . .. . . .
.. .

s:(f) = *. )lfl*fa .: .:-” (0)
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where N- 18 the number of x rays detected per unit distance in each projection. Note that
N“ need not be equal to N since the detection efficiency may not be 100%. Also, it should
be realized that this spectrum is only defined for Ifls I’a,as In Eq. 7, not over the whole
freqdency range as in Eq. 2.

In order to extend this model to simulate the normal 2-D CT case we will assume that
many projection measurements are made, each vith a different p~sltion of the sampling grid
Y. For example, Fig. 2 Illustrates four projections taken of a point object with a rect-
&ular aperture function of width a. If the set of m projections taken at various values
of 30 are used to detect the presence of the object, th(,uptimum SNR Is simply:

-.
. “SNR: = ~SNR;(yo) . . . .

m . . ._

.

q

‘adflPy (f)lz
= o

-fa s;(f)

..-
,.

fa

=

I
df

-fa

~lPy (f)l’

:Sp(f)

(9)

It is found that in the limit as m goes to
as:

PSNR;(f) = MN” Af {lG(f)121P(f)
a

-- -...—— -—.--— —.. ..—..-. . .

infinity, the integral of Eq. 9 may be written

2} = NEQAf {IG121P12}
a

(lo)
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Ln- _n- ‘1’”2-Ln- Example of discrete

pro~ections obtained
In the 1-D model for
three different posi-
tions (A) of a point
obJa\:t. A rectangular

__El- __n_
~

LIL.JZLJA
aperture function–is
aasumed. The recon-
struction is produced
by backprodection
using nearest-neighbor

r 1 ltNN3rPOltAtlon with the
same sample spacing as
the projection.
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The interesting aspect of this equation is that when the signal power is averaged over all
y the offset phase factor In Eq. 7 eliminates those ampllt,udeproducts which occur at dif-
f~rent aliased frequencies. Thus, the PSNR for the discretely sampled projections is just
the allased product of object and aperture power spectra divided by the noise power spec-
trum . The product mN” has been replaced by NEQ, the-total number of noise equivalent quan-
ta detected per unit distance for all of the projections. We see that NEQ plays a central
role In the detection capabilities inherent In the proJectlcn data.

It is interestingto analyze the projections depicted In Fig. 2 In terms of the fore-
going. Since the object Is assumed to be a &-function, P!f) = P = co;;tant. Also, the
Fourier tra sform of the rectangular aperture function is G(f) =“sinc

Y
where

8inc z = z- sin z. wa

Then,

PSNR~(f) = NEQoP~ Af {sinc2 ~ }
a a

-.
- = Nl%Q P: (11)--—.

since when the sinc2 functl-n Is aliased, the result is unity. Equation 11 Indicates that
PSNR Is Independent of frequency. But this Is what is expected since the projections are
6-functions In their discrete representation leading to a constant signal power in frequency
space.

Discrete ReconstructIon
...

To mimic 2-D CT reconstruction one step further, let us suppose that we wish to combine
all of the projectionmeasurements into a single 1-D distribution which we will call a
Vfreconstruction.‘f It Is desirable to maintain the SNR for the detection of the object 2s
much as possible. Howe\’er,we will suppose that we are constrained to a discrete represen-
tation for the reconstruction. An appropriate algorlthm for the reconstruction prticessis
that of backprojection. In backproJection, the contribution at a Specific pOlnt In the re-
construction i~ proportional to the sum of the values of the projections at that same posi-
tion. Since the projection measurements are only known at discrete positions, some method
of interpolationbetween these positions Is required. If nearest-neighbor interpolation is
employed, the interpolation function h(x) Is merely a rectat?gularfunction of width a. The
Fourier transform of the interpolated projection is

.. . . . . . ..
.. .. . . . .. . . . . . ..——. . . --
. . _.. . . .

..P;O(f) = H(f) P; (f) ‘-
0.. .-

. -.. . . . .
(12).-------

where H(f) Is the Fourier transform of the Interpolation function h(X). If the projections
are to be filtered before backpro~ection, the effect of the filter may be readily incorpo-
rated in H(f). For the 1-D model at hand, filtering Is not required to obtain the proper
point-spread function, as it Is in 2-D CT. Figure 2 Illustrates the reconstruction obtained
using nearest-neighbor interpolation for three different positions of the point object with
respect to the reconstruction grid.

In the reconstructionprocess, it is assumed that the object remains stationary with
respect to the reconstruction grid but that numerous projections aloe
gl’ldoffsets y .

~aken with various
It can be shown that the.resultins reconstruction T (x) sampled at a

Bpacing b has ?he Fourier transform
.. . . . ‘...- ... . .. .

-.—. .. .. .. .. . . .
.

RD(f) = f?fb{H(f)O(f) P(f) ei2rAf} ,Ifl * fb ,“‘-””.,,_,. (13)
. .. ..

-.. ,. . .- ..-. .. . .... ..........-— .......
. ..- ..- . . ‘. . ..-., --......-.........

-1
wherq the Nyquist frequency for the reconstruction is f = (2b) . It is interesting to
note that the aliaain effects with respect to the prod~ctlon Nyquist frequency have been

fremoved by the averag ng over all yo. However, since the reconstruction is itself
I

,,, .,, ,,. .. . . ,,, ,
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discretely sampled, the result Is aliaaed with respect to the reconstruction Nyqulst fre-
quency. Similarly, che noise power spectrum of the reconstruction la

● ✎✎

Reconstruction SNR

‘The power SNR for the

PSNR~(f)

s;(f) = (NEQ)-l Ab{lH(f)i21

reconstruction is

1A “~Qp ei2FAf}12
= J.dU211=NEQ’‘b ,Ifl= f~

s:(f) Af {IH12)
b

(14)

(15)

This equation is similar to that obtained for the projections, Eq. 10, but there are subtle
differences. One of the most important features of Eq. 15 1s that In the numerator it Is
the amplitudes which are aliased, not the power. Thus, the exponential phase factor for
$.heposition of the object A has a powerful effect upon the allased result. Figure 3 shows
the PSNR of the nearest-neighbor reconstructions given in Fig. 2. For A = O, the phase
factor plays no role and the aliased contributions add constructively. The result 1s a
flat PSNR ‘Indicativeof the &-function reconstruction. however, for A = 0.5, the phase
factor leads to destructive interfererze between the aliased contributions. Thus, the
phase factor is crucial in accounting for the dependence of the reconstruction upon the
obJect position.

Equation 15 Is also different from Eq. 10 in that the interpolation transform H(f) ap-
pears. However, If H(f) were zero above fb (band-ll!nited),then the allasing has no e?fect.
The resulting FSNR would be the same as Eq. 10 except that it would not be aliased with
respect to f . Thus, the net SNR (Eq. 3) would be the same, i.e., there would be ~0 10SS
In SNR In th~ reconstruction process. One way to achieve this result is to use a very small
sample spacing b for the reconstruction to make f large enough that H(f) Is arbitrarily
small above f . Of coarse, this brute force methbd may not always be economically feasible,
for example, ~n2-DCT where from 100 000 to 260 000 computer words are routinely used to
represent the reconstructions.

DQE and MTF . ..

The detective quantum efficiency12(DQE) relates the power SNR subsequent to some stage
of signal processing PSNR~uT(f) to that preceding that stage PSNRIN(f):

.

. . .

c

!-m
0 FREQUENCY ‘N

81),,,,,,,; II,y!:l,!4,!,! ,?114!,,

.
PSNRouT(f)

DQE(f) = pSNRIN(f)

0.25b

o ‘N
,., 1 ,,, ..,,,, ,,,

0.5b

I

,-

Fi,g. 3

k ~~.!

o ‘N
,,., ,,,,,,,,, .,.,.,,...,,, l,’

(16J
. . .

The powir signal-to-
noise ratios (PSNR)
corresponding to the
reconstructions of
Fig. 2 obtained with
nearest-neighbor in-
terpolatlcm. The re-
lative SNRVS for the
detection of the point
obJc5t are 1, 0.79,
and 0.71 for positions
A/b = O, 0.25, and
0.5 respectively.

11,,,,’1,:,4, ,,
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Thus the optimum SNR for the detection of an object after Processing is (Eq. 3)

2
‘NROUT = I

df DQE(f) PSNRIN(f) (17)
●

DQE Is a convenient concept when applled to continuous coordinates since each stage of pro-
cessing contributesmultlpllcatively to the net result. However, we see that the aliasing
which occurs for discretely sampled signals renders the DQE concePt unusable since the con-
tributions at individual frequencies are no longer preserved. Further, as in Eq. 15, the
allasing can have different effects on the numerator and denominator of the PSNR and the
effects In the numerator depen~ upon the Fourier transform Of the signal, P(f). Thus, it
Is impossible to separate PSNRr Into two factors as dictated by Eq. 17.

In the situation considered above In which H(f) Is assumed to be band-limited to f , we
observed that the aliasing effects no longer exist and that the total 5NR for the recoh-
~truction is the same as for the project ens.

3
Thus, In some sense, the DQE(f) for this

case is 100%. It has already been shown for reconstruction in continuous coordinates
(which ia an equivalent situation) that DQE(f) = 100%. The Import of this result Is that
an object may be detected in a band-limited reconstruction equally well as In the projection
data themselves.

The modulation transfer function (MTF) or optical transfer functlon(OTF) concepts suffer
the same deficiencies as DQE when applied to discretely sampled signals. While Eq. 13 gives
the Fourier transform of the image, F(f) cannot be separated from the expression as a multi-
plicative factor since the phase variation of P(f) will affect the aliasing results. Ano-
ther way of saying this AS that the MTF of a system cannot be defined when the resulting
image Is not tran~;u:~on invariant. Of course, when the reconstruction becomes finely
enough sampled that allasing is eliminated, the reconstruction resolution may be legitimate-
ly characterizedby the MTF.

Effective SNR

As noted above, the PSNR(f) for the reconstruction may be a function of the position of
the object Telatlve to the reconstruction grid. It would be desirable to characterize the
average effect of arbitrary or r~ndom positions of an object upon the debection capabilities
inherent in the reconstruction. Let L’Sconsider as an example a situation in which a point
object can only assume one of two positions, A = O and A = O.ib. As shown in Fig. 3, the
optimum SNR for the reconstructions will be either SNR or 0.71 SNR , provided the observer
Is told the possible position of the object before mak?ng the decis~on. Suppose each (.S
the two positions Is equally probable. We would like to obtain the best possible ROC curve
for this combined position case with an eye toward extension of the simple binary decision’
problem to the problem of the search13 where the r lsitionof the @bject 1s not known before-
hand. Now, it is the probabilities for true positive and false positive responses which
add linearly to obtain the combined ROC curve. The optimum ROC response which combines the
best pairs of points from the ROC curves for the two possible object positions can be shown
to belong to a different class than the individual ROC curves. That is, If the Individual
ROC curves characterize the performance obtained for additive, Gaussian noise, then the CJP-
timum combined ROC curve is not of the same ,form. In other iaords,,
function distribution will have non-Gaussian tails.

the optimum-decision
Thus, the optimum combined response

:cannotbe characterizedby a single effective SNR.

While the foregoing considerations are true In general, the combined ROC curve can be
approximately characterized by the ave.’ag~ SNR:

. . .

SNReff = z pi SNRi
i

..- (18)

where P Is probability that the object Is In the itth position and SNR Is the correspond-
ing siglial-to-noiseratio. This will be a good approximation when the individual SNR, are
not very different from one another or when the SNRi are all small (~ 1). When this Ts ap-
plied to the reconstructionmethod descriled in Fig. 2, the result of averaging over all
possible object positions from A = O to A = 0.5b is SNR = O.tllSNR where SNR Is that

It is seene&6at this rec%atructlonpalgorlthmfor detection based on the projection data.
Yields an average 10SS in SNR Of 19%. Defining DQE ae a summary measure (tIOt a fUtICtlOI’I Of
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we find that the DQE of this reconstruction algorithm is 66%.
the same average detection capabilities for a point obJect In

This means that to achieve
the reconstruction as In the

prqjectlon data, the number of detected x rays must be $.ncreasedby a factor of
(.66)-1 = 1.521

Let us consider an alternative reconstruction algorithm which use% linear interpolation
in the backproJectionprocess. AS shown in Fig. 4, the result is to degrade the recon-
struction for A = 0. However, the SNR’S for A = 0.25b and 0.5b are Increased substantially.
The effective SNR is found to be 0.87 SNR and the corresponding DQE Is 0.76. Note that
although the reconstruction for A = 0.5b

!
s the same as Fig. 3, the noise power spectrum is

no longer constant (it is an aliased sine ) leading to a higher PSNR.

From the above, we see that it is possible to alter the PSNR spectrum of the reconstruc-
tions by choosing various interpolation functions h(x). If the principal application of the
reconstruction is to facilitate the detection of point-like objects, then the interpolation
function should be chosen to maximize the average detection sensitivity for a given amount
of noise In the projections. It is well to point out that the choice of h(x) may depend
u on the aperture fhnction G(x).
!

Thus, linear in~erpolation would appear to produce recon-
s ructions superior to those produced by nearest-neighbor interpolation for the rectangular
aperture assumed In Figs. 3 and 4. In practice, the choice of Interpolation function should
be tempered by practical considerations such as computation speed and appearance of the re-
construction (e.g., one might want to minimize ringing artifacts).

2-D Case

BackproJection

The filtered backprvjection reconstruction algorithm14 used In two-dimensional CT can
be seen to share many of the feat~res of the one-dimensimal model. In 2-D the discretely
sampled projections must also be interpolated in the backprodection process. Figure 5 shows
a set of pro~ections which might be ?btained for a point object. Suppose that the object
happened to fall on the center of a reconstruction pl.xel. Then the positions at which tt.s
values of the projections must be known to obtain the hackprojected value of that pixel are
the same as the trajectory of the object. Near 0° it is seen that these positions do not
always coincide with the projection sampllng points. Rather, these positions actually are
evenvly distributed relative to the projection sampling points, much in the same way as oc-
curred in the 1-D case through the variatio]lin y . Therefore, we expect that in the d5rec-
tiOTi of these projections the 2-D reconstruction #ill be subject to the same effects as
were uncovered in the 1-D model.15Near 90°, on thtiother hand, the pixel positio~ occur~
repeatedly at the same position in the projections.
(- 15° in tk:iscase)

Then for some small range of angles
, no smoothing over projection position occurs. This leads to a recon-

struction in these directions wklch more closel,vreszmbles the projections themselves.

The foregoing considerations indicate that all of tks effects discussed in the 1-D model
will be present to some extent lr~2-D reconstruction. An additional complication In 2-D
filtered backproJection is the effect of the Ifl filter required to remove the r-~ point
spread function of simple backprojectlon. This filter must liavea rather violent Influence;
upon the reconst~uction in the region close to the object. We might anticipate that this
filter could affect the detection of smail objects In 2-D, for example, because of Inexact
cancellation in the realm of discrete reconstruction.

. Conclusions

It has been shown for a 1-D model that reconstruction in discrete coordinates from dis-
cretely smapled projections can lead to a loss of sensit~vlty fop the detection of’smal~
objects. A similar loss of detection sensitivity is likely to occur in discrete 2-D CT re-
construction.
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PSNRts. The rela-
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A/b = O, 0.25 and
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